A Laurent Series Proof of the Habsieger-Kadell $q$-Morris Identity
نویسندگان
چکیده
We give a Laurent series proof of the Habsieger-Kadell q-Morris identity, which is a common generalization of the q-Morris identity and the Aomoto constant term identity. The proof allows us to extend the theorem for some additional parameter cases.
منابع مشابه
A Stembridge-Stanton style elementary proof of the Habsieger-Kadell q-Morris identity
q and x = (x1, . . . , x,) are commuting indeterminates. If (Y = ((u,, . . . , an) is any vector of integers, then xa stands for xn’ . . ._P. For example if (Y = (1, -2, 5), then XI= x,x;*x:. A Laurent polynomial is a finite linear combination of monomials x~, where the (YS have integer components. All our Laurent polynomials will be with integer coefficients. “C.T.” stands for “the constant te...
متن کاملAomoto’s machine and the Dyson constant term identity
Abstract. Aomoto has used the fundamental theorem of calculus to give an elegant proof of an extension of Selberg’s integral. A constant term formulation of Aomoto’s argument is based upon the fact that for 1 ≤ s ≤ n, the constant term in ts ∂/∂ts f(t1, . . . , tn) is zero provided that f(t1, . . . , tn) has a Laurent expansion around t1 = · · · = tn = 0. We use this as the engine for a simple ...
متن کاملMoments of the Rudin-Shapiro Polynomials
We develop a new approach of the Rudin-Shapiro polynomials. This enables us to compute their moments of even order q for q 32, and to check a conjecture on the asymptotic behavior of these moments for q even and q 52.
متن کاملON ANNIHILATOR PROPERTIES OF INVERSE SKEW POWER SERIES RINGS
Let $alpha$ be an automorphism of a ring $R$. The authors [On skewinverse Laurent-serieswise Armendariz rings, Comm. Algebra 40(1)(2012) 138-156] applied the concept of Armendariz rings to inverseskew Laurent series rings and introduced skew inverseLaurent-serieswise Armendariz rings. In this article, we study on aspecial type of these rings and introduce strongly Armendariz ringsof inverse ske...
متن کاملA Proof of Andrews ' < ? - Dyson Conjecture for «
Andrews' g-Dyson conjecture is that the constant term in a polynomial associated with the root system An _, is equal to the ^-multinomial coefficient. Good used an identity to establish the case q = 1, which was originally raised by Dyson. Andrews established his conjecture for n < 3 and Macdonald proved it when a¡ = a2 = ■ ■ ■ = a„ = 1,2 or oo for all n > 2. We use a ¿/-analog of Good's identi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 21 شماره
صفحات -
تاریخ انتشار 2014